

The incidence of post-traumatic epilepsy after TBI: a TRACK-TBI study

18TH ANNUAL NEURO-TRAUMA SYMPOSIUM

Monday, December 2, 2019

John F. Burke, MD, PhD

Traumatic Brain Injury: 2019

A Complex and Heterogeneous Disease

Endpoints

Post-traumatic Epilepsy: Outcome

	Yea	Year 5	
	LPTS	Non-LPTS	
DRS score ^b	3.0 ± 2.8	1.8 ± 2.2	
FIM Cognitive subscale score ^c	29.7 ± 5.2	31.7 ± 3.7	
FIM Motor subscale score	83.7 ± 12.5	87.9 ± 5.0	
FIM Total score	114.1 ± 15.7	118.1 ± 8.0	
SRS score			
Independent	29/56 (52%)	46/75 (61%)	
Unsupervised overnight	18/56 (32%)	26/75 (35%)	
Supervised overnight	9/56 (16%)	3/75 (4%)	
Illegal drug use	16/79 (20%)	10/82 (12%)	
Arrests ^d	5/80 (6%)	5/84 (6%)	
Attempted suicide ^d	2/73 (3%)	2/79 (3%)	
Psychiatric hospitalization ^d	3/73 (4%)	2/80 (3%)	
Satisfaction with sexual activity ^d	23/29 (79%)	25/30 (83%)	
SWLS score ^e	17.4 ± 8.2	22.9 ± 7.6	

Bushnik, et al (2012), J Head Tr. Rehab¹

Why is it important to diagnose and treat PTE?

- Patients with TBI and PTE perform worse across several performance and clinical metrics:
 - Independence
 - Cognitive Assessments
 - Illegal drug use
 - Satisfaction with life
- Patients with PTE are significantly more disabled, less independent, and prone to higher rates of mental illness (depressions, addiction, etc)
- <u>Bottom-Line</u>: Preventing PTE will improve outcomes following TBI.

How likely is PTE after TBI?

Post-traumatic Epilepsy: Incidence

Annegers, et al (1998), NEJM³

Why is it important to know the incidence of PTE?

- 2.8 million TBI/yr in US
- 20% symptomatic epilepsy from trauma²
- Understanding the incidence, risk factors, and mechanisms for PTE has major public health implications

What do we know?

- Best incidence data over 20+ yrs old.
- Relation between injury severity and PTE
 - "mild TBI" incidence 0.7% at 5 years
- PTE incidence goes up linearly to 30 yrs
 - 2.1% at 30 years

What is our approach?

Prospective Iongitudinal Precision Medicine Study

- 3000 subjects, including Controls

-Across the spectrum from concussion to coma

TRACK TBI Goals

- Improve TBI diagnosis and classification/taxonomy -
- Improve TBI outcome assessment 2.
- 3.
- Create a "Information Commons" to promote 4. collaboration and acceleration of TBI research

PTE Study Goals

- Sequelae: who develops PTE?
- → 2. How does PTE affect outcome?

 - Predictive models/risk calculators 4. of developing PTE at time of injury.

Methods: NINDS PTE screening questionnaire

- 2,698 TRACK TBI patients
- At 6- and 12-month follow up, patients given an epilepsy screening questionnaire
- Based on results of four "trigger" questions, patients were asked additional questions to verify PTE cases.
- Trigger questions based on NINDS PTE screening questionnaire

55a.	Uncontrolled movements of part or all of your body such as twitching, jerking, shaking, or going limp,		
	lasting about 5 minutes or less?		
	No		
	Yes		
	Unknown		
55b.	An unexplained change in mental state or level of awareness; or an episode of "spacing out" which		
	you could not control, lasting about 5 minutes or less?		
	No		
	Yes		
	Unknown		
55c.	Any other type of repeated unusual attacks or convulsions lasting about 5 minutes or less?		
	No		
	Yes		
	Unknown		
56.	Has anyone ever told you that you have seizure(s) or epilepsy?		
	No		
	Yes		
	Unknown		
f 1 o	r more of questions 55a, 55b, 55c or 56 = yes then ask questions 57 – 62. If 55a – 56 are each =		
no th	en skip question 57 – 62 and go to question 63.		

Results: Response to "triggers"

- Detecting heterogeneous pathology
 - concussion syndrome
 - nausea/vomiting, vertigo manifesting as "unusual attacks"
 - Sensitive not specific
- Increased incidence at 6 months
 - not expected based on Anneger's data
 - possible increased vigilance
- Far above baseline epilepsy rate
 - also should the cohort of patients who seized and fell

Results: PTE across TBI spectrum

- full incidence of PTE depends on the severity of presentation
- dramatic increase in PTE risk in GCS 3 8
- higher rate at 12 months indicates increasing seizure development
- GCS 13-15
 - non-trivial (~1%)
 - What is combined rate of PTE for GCS 13-15 cohort?

Results: PTE after TBI (GCS 13-15)

- Seizure in less severe TBI (GCS 13-15) is 1.4% at 12 months
- Higher than the rate quoted in Anneger's et al (largest **retrospective** study to date, 0.7%)
- Indicates less clinically severe TBI confers an additional seizure risk even at 12 months

Prediction I

- Ultimate goal is to predict who is at risk of PTE, and enter them into an aggressive seizure monitoring/treatment protocol
- One strategy is to use all clinical variables in a multivariate classifier, to maximize prediction accuracy.
 - Very good results
 - prediction > chance (0.75 > 0.5)
- When we looks at the weights initial GCS is the most predictive variable
 - Caution: What is driving this effect?

Prediction II

- First results suggest GCS is best predictor
 - Double the risk of PTE at 12 months when GCS < 12
 - 10 x the risk for all GCS <= 8
 - **Simple rule**: all patents with GCS 12 or less should be monitored closely with intensive PTE screening
- GCS 13-15: where prediction algorithms are needed the most
 - Large number of patients, few get PTE
 - More challenging to predict
 - AUC = 0.555 is still significantly > 0.5
 - Future classifiers should incorporate use of serum biomarkers, imaging, clinical data: Precision medicine approach

Development

Limitations

Three major limitations in this analysis

- 1. Follow-up
 - Anneger's data suggest that there is a linear increase in PTE rate up to 30 years
 - 12 month follow-up means we are misclassifying PTE patients
- 2. Diagnosis
 - Epilepsy should be diagnosed by an epileptologist
 - We need more accurate seizure work-up and assessments

Overview of TRACK-TBI LONG

N = 3300 TBI and Control Subjects

AIM 1 | Telephonic long-term follow up/screening and consent for brain donation

AIM 2 | Imaging biomarkers

AIM 3 | Biofluid biomarkers

TRACK-TBI EPI

- All subjects in TRACK-TBI
 - contacted via phone 5 years after index TBI
- Subjects with positive NINDS screen → evaluated in clinic
 - EEG/epileptologist evaluation
 - repeat psychological evaluation
 - MRI/blood biomarker evaluation

Limitations

Three major limitations in this analysis

1. Follow-up

- Anneger's data suggest that there is a linear increase in PTE rate up to 30 years
- 12 month follow-up means we are misclassifying PTE patients
- 2. Diagnosis
 - Epilepsy should be diagnosed by an epileptologist
 - We need more accurate seizure work-up and assessments
- 3. Prediction models
 - Ripe for predictive analytic approach
 - Blood biomarkers, imaging, clinical, genome...

Conclusions and next steps

PTE is a common complication of TBI and cause of epilepsy

Development of effective anti-epileptogenic treatments will require a sophisticated understanding of the clinical, imaging, neurophysiologic, and molecular features of epileptogenicity resulting from TBI

A Precision Medicine approach to PTE

- Clinical risk factors
- Imaging and blood-based biomarkers
- Genetics

Thank you

Acknowledgements

- Dr. Geoffrey Manley, Dr. Michael Huang, Dr. Phiroz Tarapore, Dr. Sanjay Dhall

TRACK-TBI Team, including

- Dr. Ramon Diaz-Arrastia
- Dr. Nancy Temkin
- Dr. Dan Lowenstein
- Brian Fabian
- Sabrina Taylor

SFGH BASIC Team, including

- Lawrence Chyall, MS, RN
- Julia Thompson Gallego, MS, ACNP-BC
- Daniel McGuire, MS, ACNP-BC
- Amy Winkelman, MSN, ACNP-BC
- Twyila Lay, MS, ACNP-BC
- Among others!

Endpoints Development

A Collaborative for Advancing Diagnosis and Treatment of TBI

Weill Institute for Neurosciences

Department of Neurological Surgery

- Bushnik T, Englander J, Wright J, Kolakowsky-Hayner SA: Traumatic Brain Injury With and Without Late Posttraumatic Seizures: What Are the Impacts in the Post–Acute Phase: A NIDRR Traumatic Brain Injury Model Systems Study. J Head Trauma Rehabil. 27 (6): E36-E44
- Lowenstein DH: Epilepsy after head injury: An overview. Epilepsia 50:4–9, 2009
- 3. Annegers JF, Hauser WA, Coan SP, Rocca WA: A Population-Based Study of Seizures after Traumatic Brain Injuries. **N Engl J Med 338**:20–24, 1998

